If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+10.4x+3=0
a = -4.9; b = 10.4; c = +3;
Δ = b2-4ac
Δ = 10.42-4·(-4.9)·3
Δ = 166.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10.4)-\sqrt{166.96}}{2*-4.9}=\frac{-10.4-\sqrt{166.96}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10.4)+\sqrt{166.96}}{2*-4.9}=\frac{-10.4+\sqrt{166.96}}{-9.8} $
| (X-7)+4/3=2(z+9) | | 2x-1=x+ | | |3x-7|+5=12 | | 8x+1=5×+22 | | (5m+1)(5m-1)=2m+7 | | 4x^+12x+11=0 | | 4(2x+3)=8x+3-2x+4 | | 25+x/x=1.05 | | (7/3x+1)-(27x/3x-1)=-9 | | 2^x+6=5 | | -5x+2=-22 | | 7^5x=2.4 | | 18a=-5 | | 10=4|7g| | | 2.1x=17.85 | | 2g+8g=-24+4g | | 6x7=-49 | | 18x^2-60x+47=0 | | 24w+18w+144=186 | | 6j^2=j(9j+13)-2(j^2-j+8) | | 1/47f=-26 | | 32w+144=186 | | (X-13)(x+18)=0 | | 2.49p+1.24=11.17 | | (X-13)(x18)=0 | | -7(x+4)-41=5-25 | | 4(3x+18)=1.2(x+6) | | 80c+4c=100 | | 5(21/2+c)=20 | | 21/2(5+c)=48 | | 5(20+c)=21/2 | | (-6v^2+2v-1)+(3v^2-9v+6)-(4v^2-9v-6)=0 |